Laurent Series Solutions of Algebraic Ordinary Differential Equations
نویسندگان
چکیده
This paper concerns Laurent series solutions of algebraic ordinary differential equations (AODEs). We first present several approaches to compute formal power series solutions of a given AODE. Then we determine a bound for orders of its Laurent series solutions. Using the order bound, one can transform a given AODE into a new one whose Laurent series solutions are only formal power series. The idea is basically inherited from the Frobenious method for linear ordinary differential equations. As applications, new algorithms are presented for determining all particular polynomial and rational solutions of certain classes of AODEs.
منابع مشابه
Construction of Special Solutions for Nonintegrable Systems
The Painlevé test is very useful to construct not only the Laurent series solutions of systems of nonlinear ordinary differential equations but also the elliptic and trigonometric ones. The standard methods for constructing the elliptic solutions consist of two independent steps: transformation of a nonlinear polynomial differential equation into a nonlinear algebraic system and a search for so...
متن کاملFormal Power Series Solutions of First Order Autonomous Algebraic Ordinary Differential Equations
Given a first order autonomous algebraic ordinary differential equation, we present a method to compute all formal series solutions. Furthermore, when the ground field is the field of the complex numbers, the computed formal power series solutions are indeed convergent in suitable neighborhoods. keywordAlgebraic autonomous differential equation, algebraic curve, local parametrization, formal po...
متن کاملFormal Power Series Solutions of Algebraic Ordinary Differential Equations
In this paper, we consider nonlinear algebraic ordinary differential equations (AODEs) and study their formal power series solutions. Our method is inherited from Lemma 2.2 in [J. Denef and L. Lipshitz, Power series solutions of algebraic differential equations, Mathematische Annalen, 267(1984), 213-238] for expressing high order derivatives of a differential polynomial via their lower order on...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملPuiseux Series Solutions of Ordinary Polynomial Differential Equations : Complexity Study
We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given in 1990 by Grigoriev for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.04174 شماره
صفحات -
تاریخ انتشار 2017